ACIDS AND BASES REFERENCE SHEET

7 Strong Acids (H ⁺) All other acids are weak		8 Strong Bases (OH ⁻) All other bases are weak
Hydrochloric acid	HCI	Lithium hydroxide LiOH
Hydrobromic acid	HBr	Sodium hydroxide NaOH
Hydroiodic	HI	Potassium hydroxide KOH
Perchloric acid	HCIO ₄	Rubidium hydroxide RbOH
Chloric acid	HCIO ₃	Cesium hydroxide CsOH
Nitric acid	HNO ₃	Calcium hydroxide Ca(OH) ₂
Sulfuric acid	H_2SO_4	Strontium hydroxide Sr(OH) ₂
		Barium hydroxide Ba(OH) ₂

Memorize these 15, ALL ELSE ARE considered WEAK

 $pH = -log_{10}[H^+]$

[H⁺] = 10^{-pH}

 $pOH = -log_{10}[OH^{-}]$

[OH-] = 10-POH

pH

pH + pOH = 14

pOH

[H⁺]

[H⁺] [OH⁻] = 1 x10⁻¹⁴

[OH-]

pH = 14 - pOH

- Acids make H⁺ ions in aqueous solutions
- Bases make OH⁻ ions in solution

Bronsted-Lowry

- Acids donate protons
- Bases accept protons

<u>Lewis</u>

- Acids accept electron pairs
- Bases donate electron pairs

STRONG ACIDS						
Acid	Formula	Conj. Base	Ka			
Perchloric	HCIO ₄	CIO4 ⁻	Very large			
Hydriodic	н	ŀ	Very large			
Hydrobromic	HBr	Br	Very large			
Hydrochloric	HCI	CI-	Very large			
Nitric	HNO3	NO ₃ -	Very large			
Sulfuric	H ₂ SO ₄	HSO4 ⁻	Very large			
Hydronium ion	H ₃ O ⁺	H ₂ O	1.0			

COMMON WEAK ACIDS					
Acid	Formula	Conj.Base	Ka		
Iodic	HIO₃	IO3 ⁻	1.7 x 10 ⁻¹		
Oxalic	$H_2C_2O_4$	$HC_2O_4^-$	5.9 x 10 ⁻²		
Sulfurous	H ₂ SO ₃	HSO₃ ⁻	1.5 x 10 ⁻²		
Phosphoric	H ₃ PO ₄	H ₂ PO ₄ ⁻	7.5 x 10⁻³		
Citric	$H_3C_6H_5O_7$	$H_2C_6H_5O_7^{-1}$	7.1 x 10 ⁻⁴		
Nitrous	HNO ₂	NO ₂ -	4.6 x 10 ⁻⁴		
Hydrofluoric	HF	F ⁻	3.5 x 10⁻⁴		
Formic	НСООН	HCOO ⁻	1.8 x 10 ⁻⁴		
Benzoic	C ₆ H₅COOH	C ₆ H₅COO ⁻	6.5 x 10⁻⁵		
Acetic	CH₃COOH	CH₃COO ⁻	1.8 x 10⁻⁵		
Carbonic	H ₂ CO ₃	HCO3 ⁻	4.3 x 10 ⁻⁷		
Hypochlorous	HCIO	CIO-	3.0 x 10 ⁻⁸		
Hydrocyanic	HCN	CN⁻	4.9 x 10 ⁻¹⁰		

COMMON WEAK BASES					
Base	Formula	Conj. Acid	Kb		
Ammonia	NH₃	NH4 ⁺	1.8 x 10 ⁻⁵		
Methylamine	CH ₃ NH ₂	CH₃NH₃⁺	4.38 x 10 ⁻⁴		
Ethylamine	$C_2H_5NH_2$	C ₂ H ₅ NH ₃ +	5.6 x 10 ⁻⁴		
Diethylamine	(C ₂ H ₅) ₂ NH	$(C_2H_5)_2NH_2^+$	1.3 x 10 ⁻³		
Triethylamine	(C ₂ H ₅) ₃ N	(C ₂ H ₅) ₃ NH ⁺	4.0 x 10 ⁻⁴		
Hydroxylamine	HONH ₂	HONH ₃ +	1.1 x 10 ⁻⁸		
Hydrazine	H ₂ NNH ₂	H ₂ NNH ₃ +	3.0 x 10 ⁻⁶		
Aniline	C ₆ H ₅ NH ₂	C ₆ H ₅ NH ₃ +	3.8 x 10 ⁻¹⁰		
Pyridine	C₅H₅N	C₅H₅NH⁺	1.7 x 10 ⁻⁹		

WEAK ACIDS AND BASES CALCULATIONS

- Dissociation is a reversible reaction!
- So use Equilibrium Expressions, K values, and Ice Tables to find []'s before doing pH type calculations
- Equilibrium Expression still $\frac{Products}{Reactants}$ which will be $\frac{[Dissociated Ions]}{[Undissociated Molecule]}$
- To find pH (or pOH) of something you first have to know the [H₃O₊] (or [OH⁻])
 - For weak acids/bases you need to do the following steps to find those []'s
 - Step 1 ICE Table
 - Step 2 Write a Ka expression (or Kb depending on the problem)
 - Step 3 Solve for x using either quadratic or 5% rule
 - Step 4 put x back into ICE Table to find the actual [] answers
 - Step 5 use your [H₃O⁺] (or [OH⁻]) to find the pH (or pOH)

MONOPROTIC VS. POLYPROTIC - HOW MANY IONS COME OFF?

- Monoprotic acids/bases → only have one H⁺ or OH⁻
- Diprotic acids/bases → have two H⁺ or OH⁻
- Triprotic acids/bases → have three H⁺ or OH⁻
- Strong Bases
 - \circ all OH⁻ come off
 - Take that into account with your stoichiometry when finding the [OH-]
 - 1 M Ca(OH)₂ = 2 M of OH⁻ ions
- <u>Strong Acids</u>
 - \circ $\;$ The first H^+ comes off and it would be a normal strong acid type pH calculation
 - No Ka value needed
 - No ICE Table needed.
 - The second/third/etc H⁺ might come off <u>BUT</u>
 - That would be a weak reaction and you would need:
 - Ka value for that second H⁺ coming off
 - Would need to do an ICE table
 - Then add the [H⁺] from the ICE Table calculation to the [H⁺] you found from the first H⁺ coming off.
 - Example: H₂SO₄ → H⁺ + HSO₄⁻
 Only assume one H⁺ comes off unless given Ka value for HSO₄⁻ → H⁺ + SO₄²⁻
- Weak Acids/Bases
 - For the given Ka or Kb value assume only one H⁺/OH⁻ comes off.
 - You would need a second Ka or Kb value to do a second ICE Table for the second H⁺/OH⁻ coming off, and then would need to add your []'s from each ICE Table calculation.